

which was hydrolyzed completely to d-T and d-pT by snake venom phosphodiesterase.

For routine synthesis of oligonucleotides with phosphodiester backbones it is desirable to cleave the P-O protecting groups before removing the oligomers from the insoluble support. Heretofore this has not been possible with trichloroethyl phosphotriesters since neither zinc¹¹ nor radical anions¹² are effective on substrates bound to silica supports. A search for a new reagent for deprotection revealed that tributylphosphine¹³ in DMF-Et₃N at 80 °C converts nucleoside trichloroethyl and trichlorodimethylethyl phosphotriesters efficiently to the corresponding nucleoside phosphotriesters for reactions conducted both in solution and on insoluble supports.

Use of the phosphorochloridite reagents (1) in conjunction with deprotection by Bu_3P is illustrated by the synthesis of d-T₁₆ and d-GCAAATATCATTTT. Reactions were carried out on silica (80 mg, 3 μ mol of d-(DMTr)T in a column similar to that previously described.^{4a} Preliminary experiments showed the following sequence to be effective: treatment with (1) 3% Cl₃CCOOH in CH_3NO_2 ,^{4e} 2.5 min, (2) pyridine, 2 min, (3) reagent 1 in 3:1 CH₂Cl₂-N-methylimidazole,¹⁴ 15 min, (4) pyridine, 2 min, (5) I₂ in 40:20:1 THF-pyridine-H₂O or 0.2 M m-chloroperbenzoic acid in CH₂Cl₂-pyridine, 2 min, (6) pyridine, 2 min, (7) CH₃NO₂, 2 min. With this procedure yields averaged above 95% per cycle for addition of a nucleotide unit (trityl cation test). On completion, the loaded silica was heated with 2:1:4 Bu₃P-Et₃N-DMF (80 °C, 3 h) and NH₄OH (50 °C, 12 h). The ammoniacal solutions were evaporated and the products analyzed by HPLC. The chromatographic profiles (Figure 1) show that the efficiency through the synthetic cycles and deprotection steps is good. Samples purified by HPLC and chromatography on silica gel^{4c} were characterized by hydrolysis to the component nucleotides and nucleosides (d-T or d-G) by snake venom phosphodiesterase and, after labeling with ^{32}P (polynucleotide kinase), by sizing by electrophoresis on a polyacrylamide gel (single spots were obtained corresponding to a hexadecamer for the thymidine derivative and to a tetradecamer for the mixed oligomer).

The ease of preparing the active reagents, high selectivity in reactions,15 stability of the intermediate triesters, and efficiency in deprotection make this approach promising for routine synthesis of oligonucleotides for studies in molecular biology. In addition,

- (12) Letsinger, R. L.; Finnan, J. L. J. Am. Chem. Soc. 1975, 97, 7197.
- (13) Other phosphine derivatives, e.g., $[(CH_3)_2N]_3P$, are also active.
- (14) N-Methylimidazole accelerates the condensation reaction.

Figure 1. HPLC analysis of reaction mixtures from preparation of (A) d-T₁₆ and (B) d-GCAAATATCATTTT; Whatman Partisil PXS ODS-3 column, starting with 11% CH₃CN, 89% 0.1 M aqueous Et₃NH⁺OAc⁻ and increasing CH₃CN at rate of 0.1%/min.

in combination with procedures utilizing methyl protecting groups for P-O, this chemistry provides flexibility in synthesizing and subsequently modifying oligonucleotides possessing enzyme-resistant sites (i.e., stable triester links) at specified points in phosphodiester chains.

Acknowledgment. This research was supported by the National Institute of General Medical Sciences of the National Institutes of Health (GM10265). Gel electrophoresis was carried out by David D. Miller.

Rhenium(VII) Neopentylidene and Neopentylidyne Complexes¹

D. Scott Edwards and Richard R. Schrock*

Department of Chemistry 6-331 Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Received June 25, 1982

In the past several years a variety of d⁰ alkylidene² and alkylidyne³ complexes of Nb, Ta, Mo, and W have been prepared, most of them by a variation of the α -hydrogen abstraction reaction.4 An interesting question is whether as yet unknown Re(VII) alkylidene and alkylidyne complexes can be prepared by using related methods. We report here that they can be, but so far at least one other π -bonding ligand (dianion or trianion) must be present in order for the metal to sustain its relatively high oxidation state.

The starting point in this chemistry is $Re(N-t-Bu)_3(OSiMe_3)$, a compound that can be prepared in high yield from Re_2O_7 and NH(SiMe₃)-t-Bu.⁵ Addition of 4 equiv of gaseous HCl to Re-(N-t-Bu)₃(OSiMe₃) in dichloromethane produces 1 equiv of t-BuNH₃Cl and orange Re(N-t-Bu)₂Cl₃ in >85% yield.⁶ Since Re(N-t-Bu)₂Cl₃ is a monomer in dichloromethane and the tertbutyl groups are equivalent by ¹H and ¹³C NMR, we propose that it is a trigonal bipyramidal species with equatorial imido ligands (cf. other five-coordinate d⁰ complexes containing two π -bonding ligands isoelectronic with imido ligands such as Ta- $(CHCMe_3)_2(mesityl)(PMe_3)_2^7$ and $W(O)(CHCMe_3)(PEt_3)Cl_2^8)$.

⁽¹¹⁾ Eckstein, F.; Rizk, I. Angew. Chem., Int. Ed. Engl. 1967, 6, 695.

⁽¹⁵⁾ For another means of achieving selectivity see: Beaucage, S. L.; Caruthers, M. H. Tetrahedron Lett. 1981, 22, 1859.

⁽¹⁾ Multiple Metal-Carbon Bonds. 30. For part 29 see ref 15.

⁽²⁾ Schrock, R. R. In "Reactions of Coordinated Ligands"; Braterman, P.

⁽a) Clark, D. N.; Schrock, R. J. Am. Chem. Soc. 1978, 100, 6774.
(b) Wengrovius, J. H.; Sancho, J.; Schrock, R. R. J. Am. Chem. Soc. 1978, 103, 3932.
(4) Wood, C. D.; McLain, S. J.; Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 3210.

^{(5) (}a) Nugent, W. A.; Harlow, R. L. J. Chem. Soc., Chem. Commun. 1979, 1105. (b) Nugent, W. A.; Haymore, B. L. Coord. Chem. Rev. 1980,

^{31, 123.} (6) Anal. Calcd for $ReC_8H_{18}N_2Cl_3$: C, 22.09; H, 4.17. Found: C, 22.15; H. 4.11.

⁽⁷⁾ Churchill, M. R.; Youngs, W. J. Inorg. Chem. 1979, 18, 1930.

Scheme I

Trialkyl complexes, $Re(N-t-Bu)_2R_3$ (R = Me, CH₂Ph, CH₂SiMe₃) can be made in high yield from Re(N-t-Bu)₂Cl₃ by using the appropriate alkylating reagent.9a All indications are9b that they are also trigonal bipyramidal species that do not readily exchange axial and equatorial R groups at a rate on the order of the NMR time scale. This proposal differs from that concerning the structure of ReO₂Me₃, where axial and equatorial oxo ligands were postulated.¹⁰

All attempts to prepare $Re(N-t-Bu)_2Np_3$ (Np = CH_2CMe_3) have failed. Instead, a monomeric neopentylidene complex is obtained as a distillable yellow-orange oil in >70% yield (doubly distilled; eq 1).¹¹ One might presume Re(N-t-Bu)₂Np₃ is an

$$\operatorname{Re}(\operatorname{NBu}^{\dagger})_{2}\operatorname{Cl}_{3} + 3\operatorname{NpMgCl} \longrightarrow \begin{array}{c} \operatorname{Bu}^{\dagger}_{N} \\ \operatorname{Re}^{\left(\operatorname{NBu}^{\dagger}\right)}_{2}\operatorname{Cl}_{3} + 3\operatorname{NpMgCl} \\ \operatorname{Bu}^{\dagger}_{1}\operatorname{CHBu}^{\dagger} \end{array}$$
(1)

intermediate since yellow crystalline Re(N-t-Bu)₂(CHSiMe₃)-(CH₂SiMe₃)¹² can be obtained quantitatively by photolyzing $Re(N-t-Bu)_2(CH_2SiMe_3)_3$ in pentane through Pyrex with a medium-pressure mercury lamp. (The connection between thermal α -hydrogen atom abstraction reactions and photochemical ones has been noted in tantalum chemistry.⁴) Of course we cannot exclude the possibility that formation of Re(N-t-Bu)₂(CH-t-Bu)(CH₂-t-Bu) is a more complex reaction (cf. the preparation of $Ta(CH-t-Bu)(CH_2-t-Bu)_3^{13a}$). Photolysis of $Re(N-t-Bu)_2$ - $(CH_2Ph)_3$ produces a complex mixture of products which by ¹H NMR contains $\text{Re}(N-t-Bu)_2(\text{CHPh})(\text{CH}_2\text{Ph})$ (CHPh at δ 12.4); unlike $Re(N-t-Bu)_2(CHSiMe_3)(CH_2SiMe_3)$, $Re(N-t-Bu)_2$ -(CHPh)(CH₂Ph) is not stable under the reaction conditions. Photolysis of $Re(N-t-Bu)_2Me_3$ is even more complex; there is no obvious indication (other than evolution of methane) that Re(N $t-Bu)_2(CH_2)$ Me forms. These results are analogous to those obtained in other systems, 2,13b i.e., the ease of α -hydrogen abstraction again appears to vary in the order $R = CH_2CMe_3 >$ $CH_2SiMe_3 > CH_2Ph \gg CH_3$.

 $Re(N-t-Bu)_2(CH-t-Bu)(CH_2-t-Bu)$ reacts with 3 equiv of 2,4-lutidine hydrochloride in dichloromethane to give a species whose proposed structure is shown in eq 2. Two isomers are

but since in such a species where $K = Cri_2ri$ of $Cri_2sinters$ the interlytene protons would be diastereotopic. (10) Mertis, K.; Wilkinson, G. J. Chem. Soc., Dalton Trans. **1976**, 1488. (11) Anal. Calcd for $\text{ReC}_{18}\text{H}_{39}\text{N}_2$: , 46.03; H, 8.39. Found: C, 46.12; H, 8.31. Parent ions (^{185}Re , 37%; ^{187}Re , 63%) observed in mass spectrum; CHCMe₃ found at 262.2 ppm ($J_{CH} = 134$ Hz) in ^{13}C NMR spectrum. (12) Anal. Calcd for $\text{ReC}_{16}\text{H}_{39}\text{N}_2\text{Si}$; C, 38.28; H, 7.83. Found: C, 88 65; H, 7.00. Protect ions observed in measurement (HSiMe found at

38.65; H, 7.99. Parent ions observed in mass spectrum; CHSiMe3 found at 237.5 ppm ($J_{CH} = 128$ Hz).

$$2 \xrightarrow{\text{Bu}^{\dagger}N}_{\text{Bu}^{\dagger}CH_{2}} \xrightarrow{\text{Re}^{\circ}}_{\text{CHBu}^{\dagger}} \xrightarrow{\text{6} \text{Me} - O_{\text{NHGI}}}_{\text{-2 Bu}^{\dagger}NH_{3}CI} \xrightarrow{\text{Bu}^{\dagger}C}_{\text{Bu}^{\dagger}C} \xrightarrow{\text{CI}}_{\text{Re}^{\circ}} \xrightarrow{\text{CI}}_{\text{CI}} \xrightarrow{\text{L}}_{\text{Re}^{\circ}} \xrightarrow{\text{CBu}^{\dagger}}_{\text{CI}} (2)$$

$$L = \text{Bu}^{\dagger}NH_{2}$$

observed, probably the result of either different orientations of the neopentylidene ligand in the $C_{\alpha} = Re = C_{\alpha}$ plane or a cisoid arrangement of t-BuNH₂ ligands instead of the transoid arrangement shown. An interesting feature of the ¹³C NMR spectrum of this species is that the signal for the alkylidyne α carbon atom is found upfield from that for the alkylidene α -carbon atom in each isomer.¹⁴ A plausible sequence of reactions leading to [Re(C-t-Bu)(CH-t-Bu)(NH₂-t-Bu)Cl₂]₂ (Scheme I) is based in part on the fact that if pyridine hydrochloride is used instead of 2,4-lutidine hydrochloride, the product is an unstable pyridine adduct of Re(C-t-Bu)(NH-t-Bu)(CH₂-t-Bu)Cl₂ (two isomers), which decomposes to [Re(C-t-Bu)(CH-t-Bu)(NH₂-t-Bu)Cl₂]₂. The most striking feature of the reaction to give [Re(C-t-Bu)- $(CH-t-Bu)(NH_2-t-Bu)Cl_2]_2$ is that protons move from carbon to nitrogen, the reverse of what was found recently in a tunsten system where $W(NHPh)(CCMe_3)L_2Cl_2$ is converted into W- $(NPh)(CHCMe_3)L_2Cl_2 (L = e.g., PMe_3).^{15}$

Two other neopentylidyne neopentylidene complexes can be prepared as shown in eq 3 and 4. The signal for the neo-

0.5 [Re(CBu^t)(CHBu^t)(Bu^tNH₂)Cl₂]₂
$$\frac{2Me_3Si1}{TMEDA} \xrightarrow[N^{-1}]{}_{N^{-1}CHBu^{t}}^{Me_2I} (3)^{16}$$
0.5 [Re(CBu^t)(CHBu^t)(Bu^tNH₂)Cl₂]₂
$$\frac{2LiOBu^{t}}{Bu^{t}O} \xrightarrow[N^{-1}CHBu^{t}]{}_{N^{-1}CHBu^{t}}^{Me_2I} (4)^{17}$$

pentylidyne α -carbon atom in Re(C-t-Bu)(CH-t-Bu)(TMEDA)I₂ also is found above that for the neopentylidene α -carbon atom in the ¹³C NMR spectrum,¹⁶ but in Re(C-t-Bu)(CH-t-Bu)(O-t-Bu)₂ the normal order is found.¹⁷

On the basis of recent results concerning the metathesis of olefins by d⁰ tungsten alkylidene complexes¹⁸ and the metathesis of acetylenes by d⁰ tungsten alkylidyne complexes,¹⁹ we might expect that the Re(VII) complexes prepared here would react with olefins or acetylenes. Re(N-t-Bu)₂(CH-t-Bu)(CH₂-t-Bu) does not react readily with cis-2-pentene while [Re(C-t-Bu)(CH-t-Bu)(NH₂-t-Bu)Cl₂]₂ and Re(C-t-Bu)(CH-t-Bu)(O-t-Bu)₂ do not react readily with diphenylacetylene, 4-octyne, cis-2-pentene, or 1-pentene. However, Re(C-t-Bu)(CH-t-Bu)(TMEDA)I₂ will convert several eqivalents of 3-heptyne into 3-hexyne and 4-octyne before metathesis ceases. The details of this acetylene metathesis reaction are not yet known.

Acknowledgment. We thank the National Science Foundation for supporting this research (Grants CHE79 05307, CHE82 21282).

Registry No. Re(N-t-Bu)₃(OSiMe₃), 73321-57-0; Re₂O₇, 1314-68-7; $NH(SiMe_3)-t-Bu$, 5577-67-3; $Re(N-t-Bu)_2(CH-t-Bu)(CH_2-t-Bu)$,

J. Organometallics 1982, 1, 1332.

(16) Orange-red plates from toluene; CHCMe₃ is found at 299.6 (J_{CH} = 119 Hz), CCMe₃ at 292.1 ppm. Anal. Calcd for $ReC_{16}H_{35}N_2I_2$: C, 27.63; H, 5.07. Found: C, 27.92; H, 5.08. $Re(CCMe_3)(CHCMe_3)py_2I_2$ also has been prepared. Anal. Calcd for ReC₂₀H₂₉N₂I₂: C, 32.57; H, 3.96. Found: C, 33.01; H, 4 16.

(17) Extremely air- and moisture-sensitive sublimable yellow microcrystals (mp ~30 °C); CHCMe₃ is found at 229.9 (J_{CH} = 126 Hz), CCMe₃ at 287.4 ppm. Parent ions were observed in the mass spectrum.

(19) (a) Wengrovius, J. H.; Sancho, J.; Schrock, R. R. J. Am. Chem. Soc. 1981, 103, 3932. (b) Sancho, J.; Schrock, R. R. J. Mol. Catal. 1982, 15, 75.

⁽⁸⁾ Churchill, M. R.; Missert, J. R.; Youngs, W. J. Inorg. Chem. 1981, 20, 3388.

^{(9) (}a) $Re(N-t-Bu)_2Me_3$, a colorless liquid (mp ≈ 10 °C), was prepared by using excess AlMe₃ in toluene. Orange crystalline Re(N-t-Bu)₂(CH₂Ph)₃ was prepared by using 3 equiv of PhCH₃MgCl in ether (Anal. Calcd for $ReC_{29}H_{39}N_2$: C, 57.86; H, 6.53. Found: C, 58.35; H, 6.59). Yellow, light-sensitive $Re(N-t-Bu)_2(CH_2SiMe_3)_3$ was prepared by using 1.5 equiv of $Zn(CH_2SiMe_3)_2$ and 1.5 equiv of NEt_4Cl in dichloromethane (Anal. Calcd for $ReC_{20}H_{51}N_2Si_3$: C, 40.70; H, 7.83. Found: C, 40.94; H, 7.99). (b) The alternative square-pyramidal geometry with basal imido ligands can be ruled out since in such a species where $R = CH_2Ph$ or CH_2SiMe_3 the methylene

^{(13) (}a) Schrock, R. R.; Fellmann, J. D. J. Am. Chem. Soc. 1978, 100, 3359. (b) Rupprecht, G. A.; Messerle, L. W.; Fellmann, J. D.; Schrock, R. R. Ibid. 1980, 102, 6236.

⁽¹⁴⁾ Pale orange cubes from dichloromethane. Major isomer: CCMe₃ at 294.3, CHCMe₂ at 298.4 ($J_{CH} = 128$ Hz). Minor isomer: CCMe₃ at 293.7, CHCMe₃ at 299.2 ($J_{CH} = 125$ Hz). Molecular weight in dichloromethane (differential vapor pressure) 939 (995 calcd).
 (15) Rocklage, S. M.; Schrock, R. R.; Churchill, M. R.; Wasserman, H.

^{(18) (}a) Schrock, R.; Rocklage, S.; Wengrovius, J.; Rupprecht, G.; Fellmann, J. J. Mol. Catal. 1980, 8, 73. (b) Wengrovius, J.; Schrock, R. R.; Churchill, M. R.; Missert, J. R.; Youngs, W. J. J. Am. Chem. Soc. 1980, 102, 4515. (c) Kress, J.; Wesolek, M.; Osborn, J. A. J. Chem. Soc., Chem. Commun. 1982, 514.

83487-27-8; Re(N-t-Bu)₂Me₃, 83487-28-9; Re(N-t-Bu)₂(CH₂Ph)₃, 83487-29-0; Re(N-t-Bu)₂(CH₂SiMe₃)₃, 83487-30-3; Re(N-t-Bu)₂Cl₃, 83487-31-4; Re(N-t-Bu)₂Np₃, 83487-32-5; Re(N-t-Bu)₂(CHSiMe₃)-(CH₂SiMe₃), 83487-33-6; Re(N-t-Bu)₂(CHPh)(CH₂Ph), 83487-34-7; [Re(C-t-Bu)(CH-t-Bu)(NH₂-t-Bu)Cl₂]₂, 83510-97-8; Re(C-t-Bu)(NHt-Bu)(CH₂-t-Bu)Cl₂(Py), 83510-98-9; Re(C-t-Bu)(CH-t-Bu)(TME-DA)I₂, 83510-99-0; Re(C-t-Bu)(CH-t-Bu)(C-t-Bu)₂, 83487-35-8; Re-(CCMe₃(CHCMe₃)Py₂I₂, 83511-00-6.

Reaction of Tungsten(VI) Alkylidyne Complexes with Acetylenes To Give Tungstenacyclobutadiene and Tungsten Cyclopentadienyl Complexes

Steven F. Pedersen,^{1a} Richard R. Schrock,^{*1a} Melvyn Rowen Churchill,^{*1b} and Harvey J. Wasserman^{1b}

> Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139 and Department of Chemistry State University of New York Buffalo, New York 14214 Received July 29, 1982

We have reported that $W(C-t-Bu)(O-t-Bu)_3$ will catalytically metathesize dialkylacetylenes at a high rate, presumably by forming unstable tungstenacyclobutadiene intermediates.² On the other hand, while complexes such as $W(C-t-Bu)(CH_2-t-Bu)_3$,³ $W(C-t-Bu)(dme)Cl_3$,⁴ and $[NEt_4][W(C-t-Bu)Cl_4]^2$ will react with acetylenes, they do not metathesize them catalytically. We report here that $W(C-t-Bu)(dme)Cl_3$ reacts with dialkylacetylenes to give a stable tungstenacyclobutadiene complex, that tungstenacyclobutadiene complexes containing certain alkoxide ligands (but not three *tert*-butoxide ligands) are also stable, and that cyclopentadienyl complexes are formed in the presence of excess dialkylacetylene, even (slowly) in the active alkyne metathesis system.

Excess 3-hexyne reacts with $[NEt_4][W(C-t-Bu)Cl_4]$ in dichloromethane to give a pentane-soluble paramagnetic red complex with the empirical formula $W(C-t-Bu)(CH_3CH_2C \equiv$ $CCH_2CH_3)_3Cl_2$ in ~50% yield. 2-Butyne reacts more rapidly with $[NEt_4][W(C-t-Bu)Cl_4]$ to give an analogous ether-soluble species. Both can be obtained more straightforwardly by reacting an excess of the alkyne with $W(C-t-Bu)(dme)Cl_3$.⁴ In this reaction a less soluble, paramagnetic, orange complex with the empirical formula $W(C-t-Bu)(alkyne)_2Cl_4$ ⁵ also forms in ~50% yield by weight. A molecular weight study of " $W(C-t-Bu)(EtC \equiv$ $CEt)_2Cl_4$ " in dichloromethane at 0 °C (by differential vapor pressure measurement) showed it to be a dimer.

An X-ray structural study⁶ of "W(C-t-Bu)(MeC \equiv CMe)₃Cl₂" shows it to be W(η^5 -C₅Me₄-t-Bu)(MeC \equiv CMe)Cl₂, a species that is closely related to the diamagnetic Ta(III) derivatives, Ta-(η^5 -C₅Me₅)(alkyne)Cl₂.⁷ As in Ta(η^5 -C₅Me₅)(PhC \equiv CPh)Cl₂.⁷

Figure 1. ORTEP-II diagram (30% ellipsoids) of $W[C-t-BuCMeCMe]Cl_3$ with hydrogen atoms omitted.

Scheme I

the axis of the acetylene ligand in $W(\eta^5-C_5Me_4-t-Bu)(MeC \equiv CMe)Cl_2$ lies parallel to the plane of the cyclopentadienyl ligand, and the acetylene carbon-carbon bond length is lengthened considerably as a result of its strong bond to the metal. Therefore, we propose that the "[W(C-t-Bu)(alkyne)_2Cl_4]_2" species are also substituted cyclopentadienyl complexes, [W($\eta^5-C_5R_4-t-Bu$)Cl_4]_2. Most likely $W(\eta^5-C_5R_4-t-Bu)(RC \equiv CR)Cl_2$ and [W($\eta^5-C_5R_4-t-Bu$)Cl_4]_2 form via disproportionation of some intermediate tungsten(IV) complex, possibly "W($\eta^5-C_5R_4-t-Bu$)Cl_3" as shown in eq 1 and 2.

 $W(C-t-Bu)(dme)Cl_3 + 2RC \equiv CR \rightarrow "W(\eta^5-C_5R_4-t-Bu)Cl_3"$ (1)

$$W(\eta^{5}-C_{5}R_{4}-t-Bu)Cl_{3}^{*} \xrightarrow{0.5RC=CR} 0.5W(\eta^{5}-C_{5}R_{4}-t-Bu)(RC=CR)Cl_{2} + 0.25[W(\eta^{5}-C_{5}R_{4}-t-Bu)Cl_{4}]_{2} (2)$$

Addition of only 1 equiv of 3-hexyne or 2-butyne to W(C-*t*-Bu)(dme)Cl₃ yields violet diamagnetic complexes with the formula W(C-*t*-Bu)(RC=CR)Cl₃.⁸ ¹³C NMR studies suggested that these species are tungstenacyclobutadiene complexes.⁹ An X-ray structural study¹⁰ of W(C-*t*-Bu)(MeC=CMe)Cl₃ confirmed this proposal (Figure 1). The molecule is nearly a trigonal bipyramid with axial chloride ligands (\angle Cl(1)-W-Cl(2) = 166.12 (9)°) and

^{(1) (}a) Massachusetts Institute of Technology; (b) State University of New York at Buffalo.

^{(2) (}a) Wengrovius, J. H.; Sancho, J.; Schrock, R. R. J. Am. Chem. Soc.
1981, 103, 3932. (b) Sancho, J.; Schrock, R. R. J. Mol. Catal. 1982, 15, 75.
(3) Clark, D. N.; Schrock, R. R. J. Am. Chem. Soc. 1978, 100, 6774.

 ⁽⁴⁾ Purple W(C-t-Bu)(dm)Cl₃ is prepared by treating W(C-t-Bu)-(CH₂-t-Bu)₃ in a mixture of pentane, ether, and 1 equiv of 1,2-dimethoxy-ethane (dme) with 3 equiv of HCl: Schrock, R. R.; Clark, D. N.; Sancho, J.; Wengrovius, J. H.; Rocklage, S. M.; Pedersen, S. F. Organometallics 1982, in press.

⁽⁵⁾ W(C-t-Bu)(CH₃CH₂C=CCH₂CH₃)₂Cl₄. Anal. Calcd for WC₁₇H₂₉Cl₄: C, 36.52; H, 5.23; Cl, 25.37. Found: C, 36.66; H, 5.28; Cl, 26.17. MW (differential vapor pressure, CH₂Cl₂, 0 °C); Calcd: 1118. Found: 1141 at 3×10^{-2} M.

⁽⁶⁾ W(η^5 -C₃Me₂-t-Bu)(MeC=CMe)Cl₂ crystallizes in the monoclinic space group P2₁/c with a = 8.411 (1) Å, b = 26.639 (5) Å, c = 8.971 (1) Å, β = 114.320 (1)°, and ρ (calcd) = 1.89 g cm⁻³ for Z = 4 and M, 522.2. The final R_F = 3.2% for 181 variables refined against all 2244 absorption corrected data. This structure will be reported in its entirety by M.R.C. and H.J.W. (7) Smith, G.; Schrock, R. R.; Churchill, M. R.; Youngs, W. J. Inorg. Chem. 1981, 20, 387.

⁽⁸⁾ W(C-*t*-Bu)(CH₃CH₂C=CCH₂CH₃)Cl₃. Anal. Calcd for WC₁₁H₁₉Cl₃: C, 29.93; H, 4.34; Cl, 24.09. Found: C, 30.23; H, 4.50; Cl, 24.39.

⁽⁹⁾ ${}^{13}C[{}^{1}H]$ NMR spectrum of W(C-*t*-Bu)(CH₃C=CCH₃)Cl₃ (CD₂Cl₂) δ 267.5 and 263.4 (C_a), 150.7 (C_b), 44.3 (CCMe₃), 29.5 (CCMe₃), 25.6 and 17.2 (CMe). ${}^{13}C[{}^{1}H]$ NMR spectrum of W(C-*t*-Bu)(CH₃CH₂C= CCH₂CH₃)Cl₃ (C_bO_b): δ 267.6 and 266.7 (C_a), 150.3 (C_b) 43.8 (CCMe₃), 32.0 and 24.5 (CCH₂CH₃), 29.8 (CCMe₃), 14.3 and 11.9 (CCH₂CH₃). (10) W[C-*t*-BuCMeCMe]Cl₃ crystallizes in the centrosymmetric monoclinic space group P2₁/c with a = 10.271 (2) Å, b = 10.113 (2) Å, c = 12.721 (3) Å, β = 96.10 (2)⁶, V = 1313.8 (5) Å³, and ρ (calcd) = 2.09 g cm⁻³ for β - α scan X = 4 and M 413.4 Diffraction data were collected via a coupled $2\theta - \theta$ scan

⁽¹⁰⁾ W[C-t-BuCMeCMe]Cl₃ crystallizes in the centrosymmetric monoclinic space group $P2_1/c$ with a = 10.271 (2) Å, b = 10.113 (2) Å, c = 12.721(3) Å, $\beta = 96.10$ (2)°, V = 1313.8 (5) Å³, and ρ (calcd) = 2.09 g cm⁻³ for Z = 4 and M_r 413.4. Diffraction data were collected via a coupled 2θ - θ scan technique¹¹ using a Syntex P2₁ diffractometer and were corrected for absorption. All non-hydrogen atoms were located and refined, the final discrepancy factors being $R_F = 4.6\%$ and $R_{wF} = 4.4\%$ for all 2327 independent reflections (none rejected) with $4^\circ \le 2\theta \le 50.0^\circ$.

⁽¹¹⁾ Churchill, M. R.; Lashewycz, R. A.; Rotella, F. J. Inorg. Chem. 1977, 16, 265.